Optics kits $\quad 5$ pts per station. 20 pts total.
For each of the following stations;

- set up the object as described relative to lense/mirror.
- Draw the associated ray diagram in the provided space.
- Record the image distance and object distances (cm)
- Calculate f using the "lense/mirror" equation
- Compare your calculated value of " f " with stated value of " f " using \% error calculation.

1. Converging lens with object OUTSIDE of " f ".
$\mathrm{d}_{\mathrm{i}}=$ image distance (cm)
$f=$ focal length (calculated using equation) \qquad
$\mathrm{d}_{\mathrm{o}}=$ object distance (cm) \qquad f (stated) $=$ (written on lense/mirror) \qquad
2. Diverging lens with object outside of " f ".

Note: for this station, several students should 'estimate" the image distance and discuss before writing down values. Note: some students have a hard time estimating distances of virtual images. Ask Clark about "the trick"!
$\mathrm{d}_{\mathrm{i}}=$ image distance (cm)
$\mathrm{d}_{\mathrm{o}}=$ object distance (cm) \qquad
$\mathrm{f}=$ focal length (calculated using equation) \qquad
$\mathrm{f}($ stated $)=($ written on lense/mirror) \qquad
3. Concave mirror, object is OUTSIDE of " f ".
$\mathrm{d}_{\mathrm{i}}=$ image distance (cm) \qquad
$\mathrm{d}_{\mathrm{o}}=$ object distance (cm) \qquad $\mathrm{f}($ stated $)=($ written on lense/mirror $)$ \qquad
4. Concave mirror, object is INSIDE of " f ".
$\mathrm{d}_{\mathrm{i}}=$ image distance (cm) \qquad $\mathrm{f}=$ focal length (calculated using equation) \qquad
$\mathrm{d}_{\mathrm{o}}=$ object distance (cm) \qquad $\mathrm{f}($ stated $)=($ written on lense/mirror) \qquad

